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T P
l o S Tbe rea;)onse of an unbounded and isothermal atmoaphete'to.a poﬁlt R
‘ © impulse of force is studied. lvl’ronts of disturbances propagate with two
d:lfferent'speeds ‘corresponding to acoustic waves and to 'grav:lty; waves.
The distributions of kinetic energy density in the two vakes behind the .
two fronts are c#lcuiated. A striking result is that behind the acoustic
‘. front, the yvadiation density is very intense above and below the source, .
if the atmosphere 1s sufficlently stable to convection. This résult. |

‘ may be of :lnterést in connection with the formation of spicule structures .

in the solar upper chromosphere,
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1. INTRODUCTION

In a previons paper (Kato 1965; hereafter this paper will be referred .
to as I) we studied the response of an atmosphere to time-harmonic point

disturbances, This atmosphere was assumed to be isothermal and unbounded

. and subject_:ed to an uniform field of gravity. In the present paper we study.

the response of ‘the same kind of atmosphere to impulsive point distnrbances N

and emphasize some interesting effects of the degree of stability of the

atmosphere upon the response. ‘ | o
The impulsive disturbance treated here will be assumed isotropic for

two reasons. First, in paper I, we have ‘already learned something ef ‘the__

directional response of the isothermal atmosphere by treating linmear,

- oscillating forces aligned in different directions. In the -case of impulsive

’disturbances we may expect that the differences in the direction will

produce similar differences in the response of the atmosphere. Second,

for an isotropic point impulse, the response of the atmosphere is spherically v

'synmetric if the atmosphere is convectively neutral (y = 1), as we shall see.

Thus, we can concentrate our attention upon effects of the degree of

stability of the atmosphere by studying deviation from spherical symetry //

- in the response. In the Appendix, however, we indicate how directed

impulses may be treated and show how they may be combined to yield the

results obtained with an isotropic source. ' / N (

/

Now, Whitham (1961) showed that in the inftial value problems of L

propagation of. waves, the amplitude of distances can be calculated easily
» P . R

f'_and directly with the help of some properties of group velocity. We apply o .
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Whitham's method to study of the Tesponse of an atmosphere to an isotropic v

impulse, without solving an inhomogeneous wave equation. An advantage og
such a direct argmnent is that it may b taken over to a slightly non- . -

o isothermal qtmosphere.

II. GROUP VELOCITY

In order to applv Whitham's approach, it is necessary to obtain an
+..expression for the group velocity. If the diépersion relation 18 given by

G(b w) = 0, the group velocity, U, can be written as

2 w foe A |
= 57-1}, ‘VG/_ » o :-’ (1)

~ because 86/8k + @Glbw) Ow/ak =.0. In an isothermal atmosphere sttatifiei ’

under a constant gravity, g" (o, o, ;-g), the dispersion relation, G (b w)'-'} 0,

is given by (e.g., see equation (5) inI) - .

to

A 2. 2. 2.2 '
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whe.re.‘ __k‘ k +k -i-kz kl ,kx+k , and . _ ‘ .

K ‘@ =7 gl2c, and v, -(7-1)1/2 gfe . A RO

: .o‘w'here 7, g and ¢ are the ratio of the specific heats, the magnitnde of - e
gravity, ‘and the adiabatic sound velocity, respectively.

- If the angle between the direction of the group velocity and the

- R
-’

positive z-axis 1s8.© and the longitude measured from x-axis is ¢, the’ .;‘ .

: relation, // -VG, shown in equation (1) can be written as
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Expressing; for eswnple, ky and k by k with the use of equation (4),
inserting them into equation (2), we have an expression for k written by

w, © and ¢. Quite similarly we can have expressions for ky and kz. These

" expressions are? ' /
L "'4(“’24"2) 1/2 ' cosé v :

N L sind ] . o PO N
L y (ﬂ-ﬂ)(ﬂ-@ cose) | L o
Cad .

| 1 (u -4 )(w - ) 1/2 : -
k=<~ cos® .. (6)
z ¢ (mz-wicos e) ‘ : . ‘

Inserting’ the values for ‘k k and k. given in equatfons (5) and (6) '
: into a canpanent of equation v, the magnitude of the group velocity ‘can

- be expressed as (see also Moore and Spiegel 1964)

-u2)3(u -ml) (w -w? 908 9) . ‘
. A7)

Uz("’oe). = ~¢2
Of course, the group velocity has meaning only in the frequency ranges of

- acoustic waves (w > ul) and of gravity waves (u < ug cos2 8). Here we

A

w? [(u -uz) + 2(mz-mz) in e]

should ‘mention that in waves radiating energy in the critical direction,
e (cosze - W /m ), of gravity waves the group velocity is zero (see

equation (7)) and the wavelength i{s infinite (see equations (5) and (6)).

III. FREQUENCY DISTRIBUTION ‘IN WAKES

We agsume a point impulse of force at the origin, = 0, and at the '

time, t = 0. As the medium is dispersive, there remain wakes after the

1) We consider the plane 'mve exp(iwt-ik r) for w > O. If we consider the "
plane wave exp(iwt-*ik.r) for w > 0 the signs of k k and k in :
equations (5) and (6) should be changed.




.

) Moore and Spiegel's paper (1964)) for the acoustic wave mode (w > 01)'

cl | . 6

'passage of fronts of disturbances. At points in the wakes far from the

. fronts the disturbances are broken down into wave trains, the different

wave mmber components or frequency components distribute over the physical
r-space, and each k (or W) propagates wvith the group velocity (Whitham 1961,
see also Appendix B in Lighthill's paper 1960). That is, far from the

' .'froats of distiu:bances, 'l_r., (or n;) and I are related through the group

velocity B by

~

r‘-z(u,e)t. | ' ' . _ ‘(8)

This relation enables us to calculate the frequency distribution in wakes -

except for the region near the fronts. We introduce a sphere of radius

r, =ct (this spﬁere represents the fi‘ont of acousti‘c:waves) Then, from - T

equation (8), we have r/r = J(w, 6) lc or by solving this for W we obtain

W= w(r/r ,037), which shows the . frequency distribution in vakes. In

general, w is not a single valued function because there are two wave modes

‘Aof ® in the s-space are drawn in Figures 1 and 2 (see also Figure & in

and for the gravity wave mode (W < ), respectively. 'l'he'. three curves

The 1eft hand side in Figure 2 is for y = 4/3, and the right hand side is
for7-5/3. - ' o "'

Figure 1 shows that a front of acoustic waves propagates spherically
1/2

“from the source with the sound velocity (7 RT ) '« After the passage o_ﬁ L
: the froat there remains a wake. In the wake frequencies of disturbances
" tend rapidly to the upper characteristic frequency of the atmosphere, Wy

as shown in Figure 1. The result that there is a wake behind the aco\istic_ ~

" (the acoustic and the gravity wave modes). The surfaces of constant valpes o

"for each value of w in Figure 1 are fory=1, 4/3’and 5/3 respectively. ‘ ‘ SO




front, and the frequencies of disturbances in the wake tend to the upperA
. characteristic frequency is qualitatively the same as in the one-dimensional
case studied by Lamb (1908). (Lamb studied the vertical propagation of
disturbances from an impulsive force acting uniformly on an infinite ‘
Ahorizontal pla.ne.) The other front (front of gravity waves) is the one
formed by the envelope of disturbances propagating from the source as o
gravity waves, and after the passage of the front, wave motions at a
point in the wake eons:l.st of two different frequencies as shown in Figiure 2.
The gravity waves, of course, do not appear in Lamb's one-dimensional case. "
' Here we note that ngures ‘1 and 2 can also be interpreted as polar
‘diagrams of magnitude of the group velocity for accustic waves and for
gravity waves, respectively. That is, the radial distance from the origin
of a point on a curve in Figures 1 and 2 denotes the magnitude of the group.

..‘.' .

velocity in that direction and for that frequency. e T e

" IV. DISTRIBUTION OF KINETIC ENERGY -

- . DENSITY IN WAKES

a) Whitham's Method
) _ Whitham .(1961)' has shown that in the initial value problem the amplitude - -
v'ari.ation of disturbances can be calculated easily and directlvaith the

Ahelp of _some‘ .properties of group velocity. We shall apply here Wbitham' ' 2
method 'to' caiculations of the distribution of kinetic energy density in //
wakes "radiated'from an isotropic impulse. Following Whitham, we consider '

plane wave solutions, exp(iwt - ik.r), where W and k are rela.ted by
- the dispersion relation, G(E.’ w) = 0. In our present problem, the dis-

persion relation is given by equation (2). This dispersion rel_.ation shows -

. XERO [ : XEROY : (xero
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thaf for a given k fhere are always twépo'sitive values of 02; oﬁe cofresponds ’
to the acoustic wave mode ‘and thé other to the gravity wave mode. For
disturbances associated with the each wave mode, the magnitude of velbcity,' -
‘u, times one-half of the undiat:urbed density, p %, may be analyzed into |

plane waves as

Y '

[

po% u(z,t) -f F(k) exp(iwt - il,c;,x;)'dk, (w2 0) ; . B ¢}

whei:g w is rel'a.ted. to ‘i_c’by the dispersion "relation, w_hetef can be ex-

“pressed in terms ‘of the initial conditions by

F(k) =

f *u(ro) exp(ik-x) dr, . o (10)'?."-'."_.?
- (21:) L o CT

R

- ‘The right hand side of equation (9) is complex and its real part gives the

magnitude of the disturbance. B Co S S ., s
I1f 'an. impulse is isotropic the forn.:.of‘ ‘the initial condition is e

vobvious‘, ahci we can apply Whitham's method ea"sily‘. That is, the init:.lal.-_. -

condition can be written as ' '
po% u(r,0) = A 5(x), A = complex comstant. l (11)
Thus, inserting eciuation (11) .into eﬁuation (10), we have

(12)

r( -
‘) (Zrt)

That is, F(}Q depends neither on the direction of k nor on_its magnitude.




The total kinetic energy of disturbances at the time, t, is given by

f 3ot um,t) pf wkz,t) ar , (13

s

) and, on substitution of equation (9), this can also be written as

€ N f 3P PO 4k . . (14)

As .meﬁtioned in the previous section, after the initial disturbances have

been broken down into wave trains the different values of ‘l_g are distributed -

over the physical I-space and each value of k propagates in the physical

| ’:_:'-sp_'ace with the group velocity. Therefore, we have a direct cérresponden":e

. between‘e.quations (13) and (14). That is, :I;f the wave number at #osit:lon. '

r 13 k and Fhe volume element A‘r,'contéins waves with wave n\}mbgrs in an
element Ak of wave number space, then the contribution 6f that elemént to

energy is

¥

CEefut, 0 R W @, AL, D)

‘or in ‘w.avve' number space, Lo
1, .3 - A
7 (207 F) F* () Ak (16)
. and .the two must be equal. Therefore the ‘amplit;ude of p:" u (r, t) is
o - 5 ! = (2n)> kl m)Y 17
Py uE,t)] = @07 FINIA T | - 17)

If we fo],low the wave number k and retain a constant 2k, the volume element

Ag will vary due to the small differences in the group velocity for the
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~di.ffea:‘ex:\t wave mmbers in the element. Using this fact, we can'calculate... : ’

IA}s/A;r_,. Inserting the express:lon for AklAr calculated in this way into
equation (17), Whitham (1961) obtained |

' 3/2 2 - 1/2 . ,k
po’i u(g-,t)l - (—) lr()| {det ak a: ‘} ooas o
' . J ‘ o .

_The above 1'.3 a direct_ and simple derivation of the intensity of disturbances

. (compared with ‘t:_he' method of stationary phase approximation (Lighthill, ]:QL('))),~

T e

althqugh the derived information is restricted. (Equation (18) shows onlj
the magnitude of velocity, and components or the phase of‘ the velocity are

,ﬁot obtained.)'

b) Application to an Isothermal Atmosphere:
'ro apply Whitham's method to an atmosphere we must calculate

det 93 Wlak ak ei:pliéitly as a function of w. Considering that in an

3
‘ isothemal atmosphere the dispersion relation, G(k, w) = o, 18 given by .

equation (2) and also using equations (5) to (7), after rgther lengthy

~

. calculations we have the following relation

. a2 2 (m - w cos e) UZ
9w (o Uz 9
det{z—met—| = - , @2 0). (19)
akiakj 8 o3 (wz _uz)
With the use of equation (19), the amplitude of pol“ u(z, t) glven
by equation (18) can be written as | » e
¥ uol- ( )3/2 | ®| u (w ey | @0)
p u(x,t - F(k .
° ( ) 2 cos 9) uzauzlawz

For an isotropic ;meulse 1?.(’19 is constant and given by equation (12).
“ Consequently, the kinetic energy density El( (5, t), associated with a

wave mode is

p——rm—— ———— cewg -
v
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(21) .
(cf. equation (36) in the Appendix) where w is the frequency of the waves

| at the position r and the time t and is given by equation (8) as discussed
in Section III. ' »

Here it should be remembered that there are three cases where equation (8)
has zero, one and two real positive solutions of w for a given r and t (see
j Fiéures’ 1 and 2). 'These three cases respectively correspond to the three
' .cases; i) where. the front of acoustic waves .has not reached .the observation
noint (r, t) 'y.et' ii)' where the front of acoustic waves has passed the
observation point, but the front of gravity waves has not reached there yet,
and iii) where both fronts have passed Equation (21) is valid for'each_

~ wave xnode. Thus, in case ii{),the total kinetic energy density, at ¢ and t
is gi;zen by summing equation (21) for 'the acoustic wave and equation (21)
for the gravity wave (cf. equation (36) in the Appendix).

Finally, it should be mentioned that the attenuation of intensity like .

-3 -3 -

"t err” (x D 4a the n-dimensional space) along any radius vector is
characteristic of impulses propagated three dimensionally outward in a
'dispe_rsive medium. An impulse contains a range of frequencies, so

- disturbances propagate as a volume and their volume increases as r3.

V. NUMERICAL RESULTS FOR INTENSITY DISTRIBUTION IN WAKES
.Equation (21) can be rewritten as
. g ~¥ u')3 .
By @ 0 = A, P (0,657),  (22)
: i 3.3 c 6
. - i . , . .

RO




-where S ' | S T
o \ , , . m3 (wz-wi) ')'-;'j .Cia
F(w,0;7) = -

’ : 'wi (mz-mzc:osze)2 U2_6U2/aw2

(23)
2
“and C, de'notes the isothermal sound veiociﬁy. The coefficient of F in
equation (22) is independent of both the ratio of specific heats, 7, and
positio‘q in tﬂe s-spacg. The space and 7 dependencies of Fi( (£, t) are
- represented by the non-dimensional quantity, F(w,0;7), def:_(.ped by

equétion (23). ﬁe will calculate F(®,0;7) due to acoustic.waves and

gravity waves, ‘sepa.rately.’

a) bBehind the Front“of‘ Acoustic Waves
As discus.sed in Section III, the distribution of W in the I-space
is a function of r/rc, © and y. So, F is also a function of 'rlrc, © and 7;
The calculated distribution of F(w, ©; 7) in the r-space is shown in _ |
Figures 3(a), 3(b) and 3(c) for cases of y = 1, 4/3 and 5/3, respectively.
Here we mention that we do not calculate the intensity of disturbances :
near the front because near t;.he front disturbances do not break down into
wave trains yet and the approximation used to obtain equation (21) is no't‘
‘ appiicable. That is, a po;tnt in the k-space does not correspond to a
point in the r-space exactly and energy within a given volume in the “I_c'-space.
is not conserved.‘

5 Figure 3(a) shows that intensity of disturbances in the wake decreaseé
monotonically and spherically ‘after the passage of the front in a con- )
vectively neutrall atmosphere (¥ = 1). This is natural becausé an i‘;;t'rop'i?“ :
iméulse acts in an atmosphere having no particular direction (convective '.

- neutrality).. However, figures 3(b) and 3(c) show that after the passage .

of the. fro'nt radiation density is very intense above and below the souxce

——
Pt ‘yERAY
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L Af, the degree of stability of the atmosphere increases (1. e. i1f the |
value of ¥ increases). This result is suggested by the following two
| fatts, First, an impulse contains all frequency components. Second,
" the results of paper I show that the atmosphere can respond strongly to
a time-harmonic disturbance whose frequency is near the upper characteristic
- frequency, W. 1° in a sharply restricted region above and below the source,
- if the atmosphere is sufficiently stable to convection (see Figure i(s) and ;
Figure 3 in paper I). | /.' ’
This striking result shown in Figure 3(b) and 3(c) (radiation density
.is very intense sharply above the BOurce) ma.y be of interest here, because
this nxay guggest a rea.sen of formation of spicule structures in the solar
upper chromosphere. That is, vertical focussing is a possible result of
: »,sttatification.a’lone_‘. _ -
b) Behind the Front of G'ravity'Waves ‘

The distr':ibution. of F(w, 8; 7) behind the front of gravity waves are
calcullated for the case of 7 - 5/3, nnd added in Figure 2. On the -frcnt,.
'.' : 3{12/3!0.2 is zero because the front is defined as the enuelope of disturbsnees

_of al.]. frequency ccmponents. So, if equation (23) is applied literally,

intensity becomes infinite on the front. Equaticn (23) is, hcweue:, invalid

'n,e.er the front for the same reason mentioned in the previous sub-section

fct the case of the front of aceustic waves.,

| ﬁere we should mention that intensity shown in Figure 2 comes mainly

ftcm waves radiated near the critical direction ec (c0329<= = mzlwg).
As mentioned before (Section II. or paper I), the \wave number of waves

‘. rad:.ating energy in the critical direction is 1nfinite. Thus, a careful

' discussion whether intensities of gtavity waves shown in Figure 2 can be

L IxERSL
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'“-':iadiated to a great distance from the soﬁr;e in actual physical situations'}.f
_may be.neceséary.' .

: In conclusion, the author would like to expré;s his sincere thanks to . )
| Dr. Edward A. Spieéel'for kind advice and discussions, and for_zeading theff
manuscripc.‘ A part of this work was made when the authof attendéd the - j
", Summer:Schqol of Geophysical Fiuid Dynamicskheld at Wébds‘ﬂole Oceanog:ayhic
Institdtidq,’1964.‘3The author would like.to.thank Prof. Willem V. R. Malkus J
vand qther pafticipants'fér discussiqns. He would likevto thank the Natioﬁai“
Acaﬂemy of'Scieﬁces for its support and Dr. R. Jastrow for extending to him:

the hospitality of the Goddard Institute for Space Studies.
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- - APPENDIX: 'RES?ONSE TO A POINT IMPULSE ACTING IN A PARTICULAR DIRECTION //h k
‘a‘) The Asymptotic Solution of the Inhomogeneous Wave Equation - :
As done in this paper, the response of the atmospheré to an impulég. c
can be studied as an initial value problem. However, the same problem.
can be also studied by solving the inhomogeneous wave equation. - The
. latef method wiil be simpler in the case where‘ the impulse is a‘:'di'recte‘d ot
E:'p.oi‘ﬁt 'source. Let us assume an external fofce, £ (3, t), in an unbounded
gnd -i.sqther:lnai atmosphere stratified under a -cbnstant grav.ir:y. | Then, the

inhonjogeneous wave equétion represeuted by the pressure variation, pi,

* is (see equations (5) and (6) in 1)

4 2 ' . . -
) 8% 2092 2. . 2 2052 %
ey e R CAVARIC R AV B LAY T I e
ot dt . ,
" where
. s x 282 [o ., 2
o S(x, t) = - p C S5 | == +w)l/g) £ (x, t)
. : 2 . .
x 2|9 2]( 3 5
- Cc + wi|l—£f t)+—£ (x, ¢t .. (25
P O | 7 * Wl rfk @ DL E(n D) . @9
' Wé' solve equation (24) under the condition that dependegt variable,
'pllpok,. is everywhere zero until an initial instant, t = o, and at the time ‘

t = o the forxce, .g, acts instantly.
: We will introduce a four dimensional space (x, ct), and a four
dilpensional wave vector space (’15, w/c). Then, using the approximation of
. stationary phase as t == and r' ~>« (whexe r' is the distance between the
‘observation point, X and't‘he source region x ; hereafter we take the
‘ origin in the source region and do not distinguish r' and r because ' »w.);
tﬁe.aéfmpfoti;: solution of equétion'(Zl&) is ('Lighthill, 1960)

Y '



RN ~ multiplied into the corresponding co-factor of the matrix of second

5 o iy ’ .

\ ... - . / . | M16’;' ;

2y3/2 €, 8k, W/e) explil-kog + wt)] ‘
n T 172 » (26
3 lgel - Ikl 12 o

2,1/2

/o (9 ¥

: vhere'r\ia the four diﬁle'nsional»distance. (::2 + c2 t°)""' ", and where the .

- sum I 18 over all points (w2o) on tha hyper-surface, G(k, w/c) = 0 (see

: 'lrll.equat:lon (2)), whose narmal is anti-parallel to the four dimensional obser="

“ vation point (r, ct); that is, over all points where K

X ct.-VG(h, w/c) :.-a—(mas G (k, w/c) . - €27

. (cf. equations >(1‘) and (8)). }breoﬁer, in equation ('26), ok, w/c) 1s a '

" Fourier component of S(x, t);

“ ok, w/c) = - 1)4 fS(i, t) exp[-1(-k-x + wt)] dx d(ct), (28)
: . . (2x

Cb is a phase factor of modulus 1; UJG 1s the gradient of G in Cartesian
" four gpace; and K,is the Gaussian curvature of the hypersurface =~ each

‘element of the matrix of products of first derivatives of G being

-y .

" derivatives, and divided by G ~.

b) Response in Kinetic Energy

' _As a measure of the response we adopt kinetic energy dentisy, EK(E" t). :

" Kinetic energy density is related to pressure fluctuation by an equation

. (see equation (13) in paper I). Inserting equation (26) into the relatiom, . -

- after a lengthy calculation we have
. A , '

s
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1
7 32 (2 oieon’e)

2 2 2
c (w "'“’2) o

S el == L o
S wu’ o |
L points where w >0 of the points satisfying equation (28).

e

In deriving equation (29) we used

el a2 e 2) .
. Joel*=4ctw 7 1+&% ] L. (0)
. B ‘ (w ~w,cos 0) Uz ‘ ‘

- Al ‘ bix  case- (a)'
S . ’fi = {4, 6(35)8("1:)- 5iy case (b)
: (" ; L SR A) ' 51: -~ case (c) .

' _(wz-ui)llz | - R

where the prime added to I means that the summation 1s performed only for . o

[2.2 232 252 . o

S B e M e Ml O S

Ke——2C w |- 2 2 2 3T 3 (31) !

Ioel " (w’-uZcos’8) P o . :

B . . which are obtained from the definition of G &nd K and the relation be- 5

. 'tﬁe’en (E, lg)/c)‘and' ({, ct) shown 1in equation 27). '

J - . c) Response to Three Kinds of Impulses
- To calculate 101% 1a equation (29) 'explicitly,‘ we must specify the B
) é:gt:emal force, £. We study about the foilowing three kinds of sources,
'f_, isgpvarate'ly; that is, point impulses acting to x, y and z directions at. " .."‘.

. the origin, r = 0, and at the time, t = O: ¢ Lo . RRTE - T

S|
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‘oor”

- where the suffix 1 of 0 denotes case (a), and where Poo denotes the

,V'In,"‘e'ue (a), for; exampie, ingserting equation (32) into equation (25) and
. : )

EY

perfominé integrations with respect to x and t to obtain ® defined by

" equation (28). then we have & expressed by k and w. We eliminate K from '

this expression for ® with the help of equation (27) and square the

e:q:ression. Then, we have

A 2 L2 20,2 20 S
o (0" =) (W -w,) /
'ollz - -;Al—a- P 1‘ c" W 3 ; 3 2. sin coszo, case (&) /
(25) o (v -uzcos 0) e
. N N
/-’( .

Tundisturbed density at the position of the impulse. Quite similarly, for

- cases (b) and (c), we have

ﬂ'isotropic impulse and to the directed impulses, we assume three atmcspheres :

]

- (35)

Y If equations (33_),’ (34) or (35) are inserted into equation (29), we have B

) expressions for distribution of kinetic energy in the x-space resmlting

frcm impulses directed in the x, y, or z directions, respectively.

~d) A Relation to the Responce to an Isotropic Impulse

" To -ghow a relation between the response of the atmosphere to an

of. the same kind, and assume that in each atmosphere an impulse acts in

" the x, y and z-direction with a same amplitude (A = A1 A A3) at the

S 2 2,2 2
' a2 (W = wl) (W -w))
: . -1 2 . .
- ,0 12 Az ' p-l. c" u" : sinze sinZO , case (b)
' '2. (2:!) 00 (wz-ugcbsze o , :
en ’ (34)
' 2 - 2 2.2 2. . .
. - (0™ -0;) (w-w,)
lo '2 - __f_B_ p'l, cl.' u"’ [(uz-uz) + 1 2 coszel, case (¢) ...
3 oo TP whlcos’e) 3 SHRR

R4
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' same point and time, respectively. We sum the kinetic energy density at

the corresponding points in these three systems at the same time. That is,

we sum equations (33) to (35) and insert the sum into equation (29) tb

obtain
-1 2 . :
(poo Ao) u3 (wz ui) 1 e
E(z,t) = — 3! . (36)
& 420 ¢ (WP-u] cos e)2 uzau /au .

"As anticipated, the intensity distribution of the kinetic energy density
~in the X-space shown in equation (36) is quite same with that for an

~isotropic point impulse shown in equation (21).

'bxr_no t ‘ ' R i
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Figure Captions

+

Frequency distribution in wave motiohs in the wake of acoustic

waves. r, denotes the position of the front of disturbances. .

T Waaa .

Three cases (¥ = 1, 4/3 and 5/3) are drawn on the same map. e
Frequency distribution in wave motions in the wake of gravi.tj» o
waves. The envelopes denote the front of disturbances. The

1eft hand side is for y = 473; the right hand side is for

.y = 5/3. The broken lines denote intensity of disturbances

' radiate& by an isotropic point impulse, and the numerical values

represent values of F(w, 8; 7). The circular arcs at both sides

" of the figure denote the ‘position of the front of acoustic waves.

Distribution of kinetic energy demsity in the wake of acoustic

s

" waves radiated by an isotropic poiht impulse. The numerical/

values added to iso-intensity curves represent values of !

"~ . F(w, 6; 7) defined by equation (23). ‘rc denotes the position - .

of the front of disturbances.. Figqi:es 3(a), 3(b) and 3(c)

cox"respond, to the cases ¥ = 1, 4/3 and 5/3, respectively.



